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Humboldt River Region Modeling 
Update - Outline

− Intro 
− Water Supply Forecast 
− Regionwide ET Analysis 
− Model output and Demonstrative Tools to Implement and 

Apply Results
– Capture Concepts
– Upper Basin Model 
– Middle Basin Model 
– Lower Basin Model 

− 10 Min Break
− Draft Order Management Approach 
− Recap/Next Steps
− Q & A
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Water Supply Forecast

NDWR
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January 7, 2020 January 26, 2021
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JAN 1, 2021: NRCS Rye Patch Reservoir 
Storage Comparison

Rye Patch Reservoir

Current Last Year Average

KAF % of Capacity KAF KAF

62.2 32 175.4 69.2
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Precipitation Temperature

3 – Month Outlook
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Resources
National Weather Service

https://www.weather.gov

NRCS

https://www.wcc.nrcs.usda.gov/snow

Great Basin Weather and Climate Dashboard

https://gbdash.dri.edu

USGS WaterWatch

https://waterwatch.usgs.gov/index.php
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Regionwide ET Study

DRI
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Quantifying Groundwater ET 
across Humboldt River Region

Justin Huntington
February 4, 2021

DRI
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Groundwater Discharge via Evapotranspiration 

Paradise Valley, NV
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Groundwater Discharge via Evapotranspiration 
• Objective

• Delineate areas where 
phreatophytes discharge 
groundwater through the process 
of evapotranspiration 

• Use best available science to 
estimate the rates of groundwater 
evapotranspiration (ETg) from 
phreatophyte vegetation

• Summarize and compare to 
previous studies, and provide 
results to USGS and DRI 
groundwater modeling groups to 
use for calibration of groundwater 
models

USGS HA730C – Groundwater Atlas of U.S.
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1971-1984 1985-2020

Satellite and Climate Data
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Geospatial Data
• Previous phreatophyte 

boundaries, aerial imagery, 
Landsat imagery, digital 
elevation models, soils data, 
wells and water levels, field 
surveys of phreatophytes 

• Landsat satellite imagery to 
compute vegetation indices
• 1985-2015, summer 

period

• gridMET weather data for 
estimating precipitation and 
evaporative demand
• Solar radiation, 

temperature, humidity, 
and wind speed

Landsat MODIS
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True Color NAIP Imagery Vegetation Index (30m)

Groundwater Discharge Boundaries
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Groundwater Discharge Boundaries

Surface Temperature - Crescent Valley
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Groundwater Discharge Boundaries

Carico Lake Valley Crescent and Pine Valley Areas 21



+ ->

𝐸𝑇∗  =
𝐸𝑇 − 𝑃𝑃𝑇

𝐸𝑇𝑜 − 𝑃𝑃𝑇
 

Landsat and Climate -> ETg

𝐸𝑇∗ = 𝛽0 + 𝛽1𝐸𝑉𝐼 + 𝛽2𝐸𝑉𝐼
2

Beamer et al. (2013)

Rate of ETg (ft/yr) = (ETo – PPT) * ET* 

Moreo et al (2007)
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Groundwater ET Distribution

Kelley Creek Area, Clovers Area, and Pumpernickel Valley 

Groundwater ET (ft/yr)

3.6

0
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Evapotranspiration Discharge

Potential areas of GW discharge Groundwater ET Groundwater ET

Groundwater ET (ft/yr) Groundwater ET (ac/ft)

0 - 3,000

3,000 - 9,000

9,000 - 20,000

20,000 - 35,000

35,000 - 65,000

3.6

0
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Summary

• Delineated and revised groundwater discharge 
areas

• Use a combination of satellite and gridded 
climate data to estimate median ETg from 
phreatophyte vegetation from 1985-2015

• Summarize and compare to previous studies, 
and provided results to USGS and DRI 
groundwater modeling groups

• Developing geodatabase and report that will be 
publicly available on a DRI website in April 2021
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Stream Capture Concepts

USGS
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Stream capture and capture maps:
Stakeholder meeting

Update 2021-02-04

USGS NVWSC
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What is stream capture?
Reduction in streamflow caused by a pumping well.

Evapotranspiration

Evapotranspiration

Evapotranspiration

Evapotranspiration

Stream Capture = Streamflow Depletion
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How to interpret
Capture Maps

Capture maps represent the ‘hypothetical’ 
stream depletion from a well in any given 
location for a given duration of pumping.

Generally expressed as percentage of 
pumping.

Darker colors indicate higher capture.

Lighter colors indicate lower capture.

Preview of Lower Humboldt Capture 

map – 10 years of pumping

Percentage 

of Pumping
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Model
Results

30



Upper Humboldt River Basin 
Model

DRI
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Upper Humboldt Basin 
Groundwater Modeling Update

Rosemary WH Carroll 
February 4, 2021

DRI
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Outline

• Conceptual Model

• Upper Basin Modeled Characteristics

• Historic Capture (1960-2016)

• Capture Analysis

• Concluding Remarks
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Conceptual Model
Pre-Groundwater Development (<1960)

Granite Carbonate

Low Storage

Low permeability (K)

High drainage network

High Storage

High permeability

Low drainage network

Gradients

Elevation

Geology

34



Conceptual Model
Pre-Groundwater Development (<1960)                                      Historical Period (1960-2016)

Granite Carbonate

Low Storage

Low permeability (K)

High drainage network

High Storage

High permeability

Low drainage network

Gradients

Elevation

Geology

Stream Capture Controls:

• Close to river = higher capture

• Higher storage = lower capture

• Higher permeability = higher capture

• Higher drainage network = higher capture

• Higher streambed conductance = higher capture
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Model Characteristics
Basin area = 4323 mi2

• Cells 900 ft x 900 ft: ~half a million 

active cells

• Three model layers:

o Layer 1 = 300 ft
river (NHD)

Elev. range

11360-4850 ft

detail
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Rivers

• Simulate baseflow only.

• No seasonality.

• Allow gaining and losing based on 
water table elevation.

• Model does not allow for ephemeral 
conditions.

• Riverbed conductance adjusted to 
match observed streamflow

• Riverbed conductance is important to 
estimated stream capture.

Barlow and Leake, 2012

C. conductance
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Historical Forecast

Historical Capture 1960-2016
Forecast/Baseline: 2017-2116
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Historical Capture 1960-2016
Forecast/Baseline: 2017-2116

Historical

Hydrographic Areas

Forecast
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Sub-basin Historical Capture
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Layer 1: Depth to Water Table

Layer 1 = 300 ft thick

• Run the 2016 pumping for 100 years into the 
future (baseline)

• Run baseline with additional hypothetical
pumping in one location for 100 years at 50 AFY.

• Assess fraction of water in the hypothetical well 
over time that is derived from the river (fRIV). 

• Not all model cells are active (water table is too 
low). These are excluded from the analysis.

• The model is very large, so we run the experiment 
for every other cell and interpolate.

Capture Analysis 
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Y
e

a
r 

1
Capture Analysis 

Year 1

• Stream capture to satisfy hypothetical pumping is limited 
to river corridors.

fRIV
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Y
e
a

r 
1
0 Year 10

• Stream capture is expanding away from the river but 
there is spatial variability.

• Stream capture fractions in the headwater mountains is 
large.

Year 1

• Stream capture to satisfy hypothetical pumping is limited 
to river corridors.

Capture Analysis 

fRIV
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Y
e
a

r 
5
0 Year 10

• Stream capture is expanding away from the river but 
there is spatial variability.

• Stream capture fractions in the headwater mountains is 
large.

Year 1

• Stream capture to satisfy hypothetical pumping is limited 
to river corridors.

Year 50

• Stream capture continues to expand away from the river. 
Spatial variability still exists.

• Stream capture fractions merge in system headwaters and 
their alluvial fans.

Capture Analysis 

fRIV

44



fRIV

C
o
n
tr

o
ls

 o
n

 R
iv

e
r 

C
a
p
tu

re

45



fRIV
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A: large amount of capture occurs quickly
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fRIV
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A: large amount of capture occurs quickly

B: Capture amount is lower and delayed.
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fRIV
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A: large amount of capture occurs quickly

B: Capture amount is lower and delayed.

C: Capture is small and more delayed.
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fRIV
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A: large amount of capture occurs quickly

B: Capture amount is lower and delayed.

C: Capture is small and more delayed.

Controlling Factor(s)

• Distance from River
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D: Limited river capture.
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D: Limited river capture.

E: Capture increases but still low & delayed.
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D: Limited river capture.

E: Capture increases but still low & delayed.

F: Capture much larger and less delayed.
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D: Limited river capture.

E: Capture increases but still low & delayed.

F: Capture much larger and less delayed.

Controlling Factor(s)

• Riverbed conductance

• Distance from River
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G: High capture, but slightly delayed
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G: High capture, but slightly delayed

H: Capture is much lower

I: Similar to location H

57



C
o
n
tr

o
ls

 o
n

 R
iv

e
r 

C
a
p
tu

re
G: High capture, but slightly delayed

H: Capture is much lower

I: Similar to location H

J: Higher capture early, lower capture later
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G: High capture, but slightly delayed

H: Capture is much lower

I: Similar to location H

J: Higher capture early, lower capture later

Controlling Factor(s)

• Riverbed conductance

• River network density

• Geology
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Concluding Remarks

• The Upper Humboldt Model extends over a large and 
complex geographic area with large gradient in 
elevation/recharge, geology, river characteristics.

• There are simplifying assumptions to allow the model 
to be more computationally efficient but still emulate 
observed data (technical report).

• River capture in the valleys:
o Distance from river is a primary control.
o Riverbed conductance is also important

• River capture in the headwaters:
o Larger and more expansive than valleys
o Dense river network 
o Low storage in bedrock units
o Perennial streams
o Riverbed conductance is also important
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Middle Humboldt River Basin 
Model

USGS
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Middle Humboldt Capture Model

Middle Humboldt Team:
Kyle Davis, William Eldridge,
Kip Allander, Justin Mayers

USGS, Nevada Water Science Center

Humboldt Stakeholder Meeting:

February 4, 2021

* All model results are provisional and subject to change*
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Recharge distribution and results by HA 
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Evapotranspiration distribution and results by HA
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Streamflow and cumulative streamflow at Palisade (USGS 10322500)
Monthly streamflow

Cumulative streamflow
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Streamflow and cumulative streamflow at Imlay (USGS 10333000)
Monthly streamflow

Cumulative streamflow
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Layers 1 & 3, 

younger basin

fill

Simulated water level comparisons
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Layer 2, blue 
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Layers 5 & 6, 

bedrock

69



Capture Map – Imlay Depletion: 1-yr and 10-yr

1-year 10-years
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10 -years 50-years

Capture Map – Imlay Depletion: 10-yr and 50-yr
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Imlay Depletion by HA – Without Mine Pumping
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Stream efficiency is defined as percentage of flow at Imlay gage 
that passed Palisade gage – Observed monthly
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Stream efficiency – Observed monthly with 1-yr running average
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Stream efficiency – Comparing simulated running average 
with observed running average

Simulated 1-yr running average
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Humboldt Capture Query Tool – Query page
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Humboldt Capture Query Tool – Results page
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Humboldt 
Capture Query 
Tool – Exported 
results
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Lower Humboldt River Basin 
Model

DRI/USGS
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Lower Humboldt River Basin 
Model Update

Susie Rybarski/Cara Nadler 
February 4, 2021

DRI/USGS

* Model results are provisional and subject to change*
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Model Domain

Modified from Maurer and others (2004)

• 500 ft grid cell resolution

• Includes mountain block/bedrock

• 3 layers, generally representing clay (layer 

1), alluvium/valley fill (layer 2), bedrock 

(layer 3)

• Thickness of clay layer set to 50 feet

• Depth to basement based on Ponce and 

Damar (2017) and used to define elevation 

of top of layer 3, with a minimum depth of 

20 feet bls. 
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Lakes and River

• Humboldt River simulated using River package (RIV)

• Rye Patch Reservoir simulated as a constant head 

boundary (CHD), using mean stage for steady state (SS) 

model.

• Pitt-Taylor Reservoirs, Toulon Lake, and Humboldt Lake 

not simulated as they are frequently dry and heads are 

unknown.

• Mean annual stages applied to transient model.

• River conductance calibrated to estimated steady-state 

river loss of 9,900 acre-feet/year (AFA)

• 6,000-14,000 AF mean annual reservoir loss to bank 

storage; loss to aquifer unknown (Eakin, 1962; Fereday

and Nash, 2017). Simulated loss of 100 AFA determined 

by model given calibration to ET in Imlay area and local 

heads. 
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Interbasin Flow

• Specified flux boundary applied along shared 

boundary with Middle Humboldt model

• Limited to extent of alluvial slope/fluvial 

deposits/playa/valley floor

• SS flux of 771 AFA based on current outflow 

from Middle Humboldt model
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Steady State Recharge

Mountain Block Recharge (afy)

Reference Lovelock Oreana Imlay Model Domain Methodology

Everett and Rush, 1965 1,200 2,000 -- -- Maxey-Eakin, 1949

Eakin, 1962 -- -- 4,000 -- Maxey-Eakin, 1949

• Mountain block recharge estimates from Recon 
Reports distributed proportionally over Hardman map 
intervals

• Ag recharge rate applied as median of 1960-1990 
regression (127,800 AFA)

• Simulated mountain block recharge = 5,700 AFA
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Drains

• Represents ag runoff/recharge lost to sink; 
simulated using Drain (DRN) package

• Drain bottoms set to 9 ft bls

• Drain outflow estimated to be ~18,000 AFA
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Evapotranspiration
• ET zones applied over DRI polygons, estimated at 

126,000 AFA. 
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SS Model Calibration
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Hydraulic Conductivity
Layer 1 Layer 2 Layer 3
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Steady State Flow Budget
Inflows Target (AFA) Simulated (AFA)

Recharge (Mountain block + Total Ag) 133,500 133,500

Reservoir Loss <14,000 100

River Loss 9,900 9,900

Interbasin Flow 800 800

Total 144,200 + reservoir loss 144,300

Outflows Target (AFA) Simulated (AFA)

Evapotranspiration 126,000 125,900

Drains 18,200 + reservoir loss 18,400

Total 144,200 + reservoir loss 144,300
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Transient Pumping
• Domestic wells pumping outside of Lovelock Meadows service area 

at 0.7 AFA. 

• Public supply wells pumped at rates extrapolated backwards to 
1960 based on population.

• Mining wells pumpage extrapolated earliest known rates 
backwards to 1986.

• Irrigation wells pumpage inversely proportional to the ratio of 
estimated ag recharge relative to the mean ag recharge 1960-1990. 
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Transient Results
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Transient Results
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F

Transient Results
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Percentage 

of Pumping

Streamflow Capture 
Map –
Lower Humboldt after
1 year of pumping
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Percentage 

of Pumping

Streamflow Capture 
Map –
Lower Humboldt after
10 years of pumping
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Streamflow Capture 
Map –
Lower Humboldt after
50 years of pumping

Percentage 

of Pumping
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Streamflow Capture

Drain Capture

ETg Capture

Storage Depletion

Capture Maps –
Lower Humboldt 
after
10 years of pumping
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Average Capture and Depletion Curves
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End of Technical Presentations 

10 Minute Break 
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Link to Management Approach:  
Draft Order

NDWR
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Capture Study Goal

Goal:
– Characterize amount and 

distribution of capture

– Help understand capture 
dynamics that may affect amount 
and distribution of conflict

111

Science to Management



Capture Study Results

Capture:
✓ Estimate/Predict legacy, ongoing, future 

capture from existing permits

✓ Predict capture from new appropriations

✓ Predict increased capture from change 
applications
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Science to Management

Upper Humboldt Capture relative to Pumping

New Appropriation Capture Change App Capture



Management Goal

Goal:
– Prevent

– Avoid

– Reduce

– Mitigate
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Science to Management

NEED TO UNDERSTAND CAPTURE AND CONFLICT

Conflict 
due to 

Capture



Science to Management

− What can we do now?

✓Administer new appropriations to prevent additional capture

✓Administer change applications to prevent increased capture

✓Build framework for enacting statutory available tools (curtailment)

✓Facilitate community-supported solutions to prevent, avoid, reduce, 
mitigate ongoing and legacy capture

✓Improve capabilities to appropriately deliver SW by priority and to 
measure conflict with assistance of model

✓Consider adaptive, regional-scale solutions that improve the situation 
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Science to Management



Settlement Agreement

PCWCD:

✓Dismiss Writ Petition

115

Draft Interim Order

SE:

✓Develop draft order 

✓Issue by 1/19/21



Draft Interim Order

− Addresses:

1) New Appropriations

2) Change Applications

3) Curtailment Process

− Does not address alternative or long-term management 
remedies
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Draft Interim Order

Replacement 

Water and GW 

Withdrawal



Draft Interim Order

− Addresses:

1) New Appropriations

2) Change Applications

3) Curtailment Process

− Does not address alternative or long-term management 
remedies
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Draft Interim Order

Replacement 

Water and GW 

Withdrawal



Draft Interim Order

− Addresses:

1) New Appropriations

2) Change Applications

3) Curtailment Process

Does not address alternative or long-term 
management remedies
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Draft Interim Order

Focused 

Curtailment

Replacement 

Water and GW 

Withdrawal



New Appropriations
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• Replacement Water Proposal

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

A
C

R
E-

FE
ET

 P
ER

 Y
EA

R

YEARS OF PUMPING

CAPTURE AMOUNT  VS. REPLACEMENT WATER AMOUNT

∑ 50-YR CAPTURE AMOUNT: 382.15 af

∑ 50-YR REPLACED AMOUNT: 477.25 af

AVERAGE DELIVERED FOR SCENARIO: 9.545 afs

% YEARS CAPTURE NOT REPLACED: 20.0%

% YEARS DUTY NOT REPLACED: 40.0%

GROUNDWATER RIGHT APPLICATION:

New

Application #: 89110 Permit #: 72080

Duty Applied-for: 10 acre-feet Duty Changed: 10 acre-feet

Distance to river: 3,130 ft Distance to river: 3,130 ft

Transmissivity: 500 ft2/day Transmissivity: 500 ft2/day

Storage Coeff: 0.05 unitless Storage Coeff: 0.05 unitless

Diffusivity: 10000 Diffusivity: 10000

Enter Information on Base Right to be changedInformation on New or Change Application

Type of Application:

Draft Interim Order



New Appropriations
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• Replacement Water Proposal
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Replaced Amount, acre-feet

∑ 50-YR CAPTURE AMOUNT: 382.15 af

∑ 50-YR REPLACED AMOUNT: 477.25 af

AVERAGE DELIVERED FOR SCENARIO: 9.545 afs

% YEARS CAPTURE NOT REPLACED: 20.0%

% YEARS DUTY NOT REPLACED: 40.0%

CHART NOTE: WHEN ORANGE BAR IS BELOW BLUE LINE, REPLACEMENT WATER IS 

INSUFFICIENT TO OFFSET DEPLETION

Draft Interim Order

✓ Replaced > Capture

✓ Annual Capture 

Offset in >= 80% of 

Years



∑ 50-YR CAPTURE AMOUNT: 25.28 af

∑ 50-YR RECOVERED AMOUNT: 57.10 af

% YEARS CAPTURE NOT REPLACED: 10.0%

50-YEAR SCENARIO STATISTICS

Applications to Change POD
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• Withdrawal Proposal

GROUNDWATER RIGHT APPLICATION:

Change

Application #: 89110 Permit #: 72080

Duty Applied-for: 10 acre-feet Duty Changed: 10 acre-feet

Distance to river: 3,130 ft Distance to river: 3,900 ft

Transmissivity: 500 ft2/day Transmissivity: 500 ft2/day

Storage Coeff: 0.05 unitless Storage Coeff: 0.05 unitless

Diffusivity: 10000 Diffusivity: 10000

Enter Information on Base Right to be changedInformation on New or Change Application

Type of Application:

Draft Interim Order
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Applications to Change POD
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• Withdrawal Proposal

CHART NOTE: WHEN ORANGE BAR IS BELOW BLUE LINE, REPLACEMENT WATER IS 

INSUFFICIENT TO OFFSET DEPLETION

WITHDRAWAL OPTION:

Permit #: 72080

Duty: 1.6 acre-feet

Distance to river: 3,900 ft

Transmissivity: 500 ft2/day

Storage Coeff: 0.05 unitless

Enter Information on Withdrawal Right to be changed

Draft Interim Order
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Curtailment

123

Draft Interim Order

FOCUSED CURTAILMENT 

BASED ON:

✓Drought conditions

✓Short-term benefit

✓Capture liability

http://water.nv.gov/documents/Notice%20and%

20Proposed%20Order%20Humboldt%20River

%20Region.pdf

http://water.nv.gov/documents/Notice%20and%20Proposed%20Order%20Humboldt%20River%20Region.pdf


What’s Next for Linking Science to 
Management?
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Next Steps

NDWR
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Next Steps

• Final model results for management analysis and decisions

• Appropriate level of precision in relying on model results

• Public awareness and transparency

• Hearing on draft order: Friday April 2, 2021

• Final order to be issued following review of public comment
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Questions
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