

February 4, 2021 Virtual Meeting

DEPARTMENT OF CONSERVATION & NATURAL RESOURCES

1

Humboldt River Region Modeling Update - Outline

- Intro
- Water Supply Forecast
- Regionwide ET Analysis
- Model output and Demonstrative Tools to Implement and Apply Results
 - Capture Concepts
 - Upper Basin Model
 - Middle Basin Model
 - Lower Basin Model
- 10 Min Break
- Draft Order Management Approach
- Recap/Next Steps
- Q&A

Water Supply Forecast

NDWR

January 7, 2020

U.S. Drought Monitor

January 26, 2021

U.S. Drought Monitor

January 26, 2021

(Released Thursday, Jan. 28, 2021)

Valid 7 a.m. EST

Intensity:

 None
 D2 Severe Drought

 D0 Abnormally Dry
 D3 Extreme Drought

 D1 Moderate Drought
 D4 Exceptional Drought

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

<u>Author:</u>

Richard Tinker CPC/NOAA/NWS/NCEP

droughtmonitor.unl.edu

inde;	
reamflow	
Average st	

	Explanation - Percentile classes							
Low	<10	10-24	25-75	76-90	>90	High	No Data	
	Much below normal	Below normal	Normal	Above normal	Much above normal			

SNOW WATER EQUIVALENT IN UPPER HUMBOLDT

Statistical shading breaks at 10th, 30th, 50th, 70th, and 90th Percentiles. For more information visit: 30 year normals calculation description.

SNOW WATER EQUIVALENT PROJECTIONS IN UPPER HUMBOLDT

Statistical shading breaks at 10th, 30th, 50th, 70th, and 90th Percentiles. For more information visit: 30 year normals calculation description.

JAN 1, 2021: NRCS Rye Patch Reservoir Storage Comparison

Rye Patch Reservoir								
Cur	rent	Last Year	Average					
KAF	% of Capacity	KAF	KAF					
62.2	32	175.4	69.2					

Reservoir Storage Summary for the end of December 2020

3 – Month Outlook

Resources

National Weather Service

https://www.weather.gov

NRCS

https://www.wcc.nrcs.usda.gov/snow

Great Basin Weather and Climate Dashboard <u>https://gbdash.dri.edu</u>

USGS WaterWatch

https://waterwatch.usgs.gov/index.php

Regionwide ET Study

DRI

Quantifying Groundwater ET across Humboldt River Region

Justin Huntington February 4, 2021 DRI

Groundwater Discharge via Evapotranspiration

Paradise Valley, NV

Groundwater Discharge via Evapotranspiration

• Objective

- Delineate areas where phreatophytes discharge groundwater through the process of evapotranspiration
- Use best available science to estimate the rates of groundwater evapotranspiration (ETg) from phreatophyte vegetation
- Summarize and compare to previous studies, and provide results to USGS and DRI groundwater modeling groups to use for calibration of groundwater models

Satellite and Climate Data

1971-1984

1985-2020

Geospatial Data

- Previous phreatophyte boundaries, aerial imagery, Landsat imagery, digital elevation models, soils data, wells and water levels, field surveys of phreatophytes
- Landsat satellite imagery to compute vegetation indices
 - 1985-2015, summer period
- gridMET weather data for estimating precipitation and evaporative demand
 - Solar radiation, temperature, humidity, and wind speed

Groundwater Discharge Boundaries

True Color NAIP Imagery

Vegetation Index (30m)

Groundwater Discharge Boundaries

Groundwater Discharge Boundaries

Carico Lake Valley

Crescent and Pine Valley Areas

Landsat and Climate -> ETg

Moreo et al (2007)

$$ET^* = \frac{ET - PPT}{ETo - PPT}$$

 $ET^* = \beta_0 + \beta_1 EVI + \beta_2 EVI^2$

Rate of ETg (ft/yr) = $(ETo - PPT) * ET^*$

Groundwater ET Distribution

Evapotranspiration Discharge

Summary

- Delineated and revised groundwater discharge areas
- Use a combination of satellite and gridded climate data to estimate median ETg from phreatophyte vegetation from 1985-2015
- Summarize and compare to previous studies, and provided results to USGS and DRI groundwater modeling groups
- Developing geodatabase and report that will be publicly available on a DRI website in April 2021

Stream Capture Concepts

USGS

Stream capture and capture maps: Stakeholder meeting

Update 2021-02-04

USGS NVWSC

What is stream capture?

Reduction in streamflow caused by a pumping well.

Stream Capture = Streamflow Depletion

How to interpret Capture Maps

Capture maps represent the 'hypothetical' stream depletion from a well in any given location for a given duration of pumping.

Generally expressed as percentage of pumping.

Darker colors indicate higher capture.

Lighter colors indicate lower capture.

Preview of Lower Humboldt Capture map – 10 years of pumping

Model Results

Upper Humboldt River Basin Model

DRI

Upper Humboldt Basin Groundwater Modeling Update

Rosemary WH Carroll February 4, 2021 DRI

Outline

- Conceptual Model
- Upper Basin Modeled Characteristics
- Historic Capture (1960-2016)
- Capture Analysis
- Concluding Remarks

Conceptual Model

Pre-Groundwater Development (<1960)

Conceptual Model

Pre-Groundwater Development (<1960)

Geology Low Storage Low permeability (K) High drainage network

Elevation

High Storage High permeability Low drainage network

- Close to river = higher capture
- Higher storage = lower capture ٠
- Higher permeability = higher capture
- Higher drainage network = higher capture
- Higher streambed conductance = higher capture ٠

Model Characteristics

- Cells 900 ft x 900 ft: ~half a million active cells
- Three model layers:
 Layer 1 = 300 ft

USGS Seepage Sites
USGS Stream Gauge

0 5 10 20 Miles

A. Gaining stream

Stream with streambed and streambank sediments less permeable than surrounding aquifer sediments.

Barlow and Leake, 2012

Rivers

- Simulate baseflow only.
- No seasonality.
- Allow gaining and losing based on water table elevation.
- Model does not allow for ephemeral conditions.
- Riverbed conductance adjusted to match observed streamflow
- Riverbed conductance is important to estimated stream capture.

Historical Capture 1960-2016 Forecast/Baseline: 2017-2116

Historical Capture 1960-2016 Forecast/Baseline: 2017-2116

be ЗC Depleation Stream

Sub-basin Historical Capture

Layer 1: Depth to Water Table

Capture Analysis

- Run the 2016 pumping for 100 years into the future (baseline)
- Run baseline with additional <u>hypothetical</u> pumping in one location for 100 years at 50 AFY.
- Assess fraction of water in the hypothetical well over time that is derived from the river (fRIV).
- Not all model cells are active (water table is too low). These are excluded from the analysis.
- The model is very large, so we run the experiment for every other cell and interpolate.

 $\overline{}$

Year

Capture Analysis

Year 1

• Stream capture to satisfy hypothetical pumping is limited to river corridors.

Capture Analysis

Year 1

• Stream capture to satisfy hypothetical pumping is limited to river corridors.

Year 10

- Stream capture is expanding away from the river but there is spatial variability.
- Stream capture fractions in the headwater mountains is large.

Year 10

Capture Analysis

Year 1

• Stream capture to satisfy hypothetical pumping is limited to river corridors.

Year 10

- Stream capture is expanding away from the river but there is spatial variability.
- Stream capture fractions in the headwater mountains is large.

Year 50

- Stream capture continues to expand away from the river. Spatial variability still exists.
- Stream capture fractions merge in system headwaters and their alluvial fans.

A

A: large amount of capture occurs quickly

1 2 Miles

2 Miles

A: large amount of capture occurs quickly B: Capture amount is lower and delayed.

River Capture Controls on

A: large amount of capture occurs quicklyB: Capture amount is lower and delayed.C: Capture is small and more delayed.

2 Miles

River Capture Controls on

A: large amount of capture occurs quicklyB: Capture amount is lower and delayed.C: Capture is small and more delayed.

Cuscie 429 (3) III for Groppine Savety, Le set

D: Limited river capture.

D: Limited river capture.

E: Capture increases but still low & delayed.

River Capture Controls on

D: Limited river capture.

÷.

- E: Capture increases but still low & delayed.
- F: Capture much larger and less delayed.

River Capture UO Controls

D: Limited river capture.

- E: Capture increases but still low & delayed.
- F: Capture much larger and less delayed.

Controlling Factor(s)

- Riverbed conductance
- Distance from River

G: High capture, but slightly delayed

- G: High capture, but slightly delayed
- H: Capture is much lower
- I: Similar to location H

2 Miles

River Capture Controls on

- G: High capture, but slightly delayed
- H: Capture is much lower
- I: Similar to location H
- J: Higher capture early, lower capture later

River Capture UO Controls

- G: High capture, but slightly delayed
- H: Capture is much lower
- I: Similar to location H
- J: Higher capture early, lower capture later

Controlling Factor(s)

- Riverbed conductance
- River network density

Geology

Concluding Remarks

- The Upper Humboldt Model extends over a large and complex geographic area with large gradient in elevation/recharge, geology, river characteristics.
- There are simplifying assumptions to allow the model to be more computationally efficient but still emulate observed data (technical report).
- River capture in the valleys:
 - Distance from river is a primary control.
 - $\circ~$ Riverbed conductance is also important
- River capture in the headwaters:
 - Larger and more expansive than valleys
 - \circ Dense river network
 - $\circ~$ Low storage in bedrock units
 - \circ Perennial streams
 - Riverbed conductance is also important

Middle Humboldt River Basin Model

USGS

Middle Humboldt Capture Model

Middle Humboldt Team: Kyle Davis, William Eldridge, Kip Allander, Justin Mayers

USGS, Nevada Water Science Center

Humboldt Stakeholder Meeting: February 4, 2021

* All model results are provisional and subject to change*

EXPLANATION

Layer 1: Basin fill deposits-playa, valley floor, alluvial slope, fluvial deposits (thickenss 25 to 50 feet)

- Layer 2: Clay layer below layer 1 (thickness 10 to 130 feet)
- Layer 3: Lower basin fill—valley floor, fluvial deposits (thickness up to 400 feet)
- Layer 4: Older basin fill—Tertiary fine-grain semi-consolidated sediments (thickness up to 1,000 feet)

Layer 6: Lower hard rock-clastic sedimentary, carbonate and mixture, intrusive, metamorphic, clastic sandstones (thickness variable ~1,800 feet)

Groundwater outflow

Surface water flow direction

Recharge distribution and results by HA

Evapotranspiration distribution and results by HA

Average streamflow 1945 - 1958 for each gage

Humboldt River Flow Observed vs. Simulated

Observed Simulated

Humboldt River Flow

Streamflow and cumulative streamflow Humboldt River at Palisade: USGS-10322500

Streamflow and cumulative streamflow Humboldt River at Imlay: USGS-10333000

Simulated water level comparisons

Capture Map – Imlay Depletion: 1-yr and 10-yr

Capture Map – Imlay Depletion: 10-yr and 50-yr

Pumping and Imlay Depletion – All pumping – Same scale

Water year
Pumping and Imlay Depletion – All Pumping – Separate scales

Water year

Imlay Depletion by HA – Without Mine Pumping

Imlay Depletion from Mine Dewatering (net)

Imlay Depletion by Individual Mines

Total Imlay Depletion – All pumping and mine discharge

Stream efficiency is defined as percentage of flow at Imlay gage that passed Palisade gage – Observed monthly

Stream efficiency – Observed monthly with 1-yr running average

79

Stream efficiency – Comparing simulated running average with observed running average

Stream efficiency – Simulated effect of pumping

Change in stream efficiency caused by pumping

Large increase in stream efficiency in late 1990's and early 2000's was from discharge of Lone Tree Mine into Humboldt River

Change in stream efficiency with and without the influence of Lone Tree Mine

Humboldt Capture Query Tool – Query page

Humboldt Capture Query Tool – Results page

Humboldt Capture Query Tool – Exported results

Humboldt Capture Query Tool Results

After 28 years of pumping at location 40.718702, -117.004395, at a depth of 10 feet below land surface, groundwater is derived from the following sources:

Years of Pumping	Streamflow Depletion	Salvaged ET	Storage Change	Drain Capture
1	0.1%	1.4%	98.5%	0.0%
5	9.6%	9.6%	80.8%	0.0%
10	19.8%	17.8%	62.4%	0.0%
20	27.9%	28.5%	43.6%	0.0%
25	29.6%	32.2%	38.2%	0.0%
28	30.4%	34.1%	35.5%	0.0%
50	33.8%	42.6%	23.6%	0.0%
75	35.2%	47.5%	17.3%	0.0%
100	36.0%	50.1%	13.9%	0.0%

Lower Humboldt River Basin Model

DRI/USGS

Lower Humboldt River Basin Model Update

Susie Rybarski/Cara Nadler February 4, 2021 DRI/USGS

* Model results are provisional and subject to change*

Model Domain

- 500 ft grid cell resolution
- Includes mountain block/bedrock
- 3 layers, generally representing clay (layer 1), alluvium/valley fill (layer 2), bedrock (layer 3)
- Thickness of clay layer set to 50 feet
- Depth to basement based on Ponce and Damar (2017) and used to define elevation of top of layer 3, with a minimum depth of 20 feet bls.

Lakes and River

- Humboldt River simulated using River package (RIV)
- Rye Patch Reservoir simulated as a constant head boundary (CHD), using mean stage for steady state (SS) model.
- Pitt-Taylor Reservoirs, Toulon Lake, and Humboldt Lake not simulated as they are frequently dry and heads are unknown.
- Mean annual stages applied to transient model.
- River conductance calibrated to estimated steady-state river loss of 9,900 acre-feet/year (AFA)
- 6,000-14,000 AF mean annual reservoir loss to bank storage; loss to aquifer unknown (Eakin, 1962; Fereday and Nash, 2017). Simulated loss of 100 AFA determined by model given calibration to ET in Imlay area and local heads.

Interbasin Flow

- Specified flux boundary applied along shared boundary with Middle Humboldt model
- Limited to extent of alluvial slope/fluvial deposits/playa/valley floor
- SS flux of 771 AFA based on current outflow from Middle Humboldt model

Steady State Recharge

	Mountain Block Recharge (afy)				
Reference	Lovelock	Oreana	Imlay	Model Domain	Methodology
Everett and Rush, 1965	1,200	2,000			Maxey-Eakin, 1949
Eakin, 1962			4,000		Maxey-Eakin, 1949

- Mountain block recharge estimates from Recon Reports distributed proportionally over Hardman map intervals
- Ag recharge rate applied as median of 1960-1990 regression (127,800 AFA)
- Simulated mountain block recharge = 5,700 AFA

Drains

- Represents ag runoff/recharge lost to sink; simulated using Drain (DRN) package
- Drain bottoms set to 9 ft bls
- Drain outflow estimated to be ~18,000 AFA

Evapotranspiration

• ET zones applied over DRI polygons, estimated at 126,000 AFA.

SS Model Calibration

Hydraulic Conductivity

Layer 1

Layer 2

Steady State Flow Budget

Inflows	Target (AFA)	Simulated (AFA)
Recharge (Mountain block + Total Ag)	133,500	133,500
Reservoir Loss	<14,000	100
River Loss	9,900	9,900
Interbasin Flow	800	800
Total	144,200 + reservoir loss	144,300

Outflows	Target (AFA)	Simulated (AFA)
Evapotranspiration	126,000	125,900
Drains	18,200 + reservoir loss	18,400
Total	144,200 + reservoir loss	144,300

Transient Pumping

- Domestic wells pumping outside of Lovelock Meadows service area at 0.7 AFA.
- Public supply wells pumped at rates extrapolated backwards to 1960 based on population.
- Mining wells pumpage extrapolated earliest known rates backwards to 1986.
- Irrigation wells pumpage inversely proportional to the ratio of estimated ag recharge relative to the mean ag recharge 1960-1990.

Transient Results

Transient Results

Е

Transient Results

Estimated Humboldt River Depletion

Streamflow Capture Map – Lower Humboldt after 1 year of pumping

Streamflow Capture Map – Lower Humboldt after 10 years of pumping

Streamflow Capture Map – Lower Humboldt after 50 years of pumping

Capture Maps – Lower Humboldt after 10 years of pumping

Storage Depletion

ETg Capture

Drain Capture

Average Capture and Depletion Curves

End of Technical Presentations

10 Minute Break

Link to Management Approach: Draft Order

NDWR

Science to Management

Capture Study Goal

Goal:

- Characterize amount and distribution of **capture**
- Help understand capture dynamics that may affect amount and distribution of **conflict**

Science to Management

Capture Study Results

Capture:

- Estimate/Predict legacy, ongoing, future capture from existing permits
- ✓ Predict capture from new appropriations
- Predict increased capture from change applications

Upper Humboldt Capture relative to Pumping

New Appropriation Capture

Management Goal

NEED TO UNDERSTAND CAPTURE AND CONFLICT

Science to Management

- What can we do now?
 - ✓ Administer new appropriations to prevent additional capture
 - ✓ Administer change applications to prevent increased capture
 - ✓ Build framework for enacting statutory available tools (curtailment)
 - ✓ Facilitate community-supported solutions to prevent, avoid, reduce, mitigate ongoing and legacy capture
 - Improve capabilities to appropriately deliver SW by priority and to measure conflict with assistance of model
 - ✓ Consider adaptive, regional-scale solutions that improve the situation

Settlement Agreement

PCWCD:

✓ Dismiss Writ Petition

SE: ✓ Develop draft order ✓ Issue by 1/19/21

PERSHING COUNTY WATER CONSERVATION DISTRICT,			
	Petitioner,	STIPULATION AND ORDER FOR DISMISSAL WITH PREJUDICE	
vs.			
TIM WILSON, P.E., State Engineer of the State of Nevada, DIVISION OF WATER RESOURCES, DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES,			
	Respondent		

DRAFT INTERIM ORDER

ESTABLISHING PROCEDURES FOR REVIEW OF APPLICATIONS TO APPROPRIATE GROUNDWATER IN THE HUMBOLDT RIVER REGION WITH REGARD TO THE POTENTIAL FOR CAPTURE OF AND CONFLICT WITH DECREED RIGHTS TO THE WATERS OF THE HUMBOLDT RIVER AND TRIBUTARIES

Draft Interim Order

- Addresses:

1) New Appropriations

Replacement Water and GW Withdrawal

Draft Interim Order

- Addresses:
 - New Appropriations
 Change Applications

Draft Interim Order

- Addresses:
 - 1) New Appropriations
 2) Change Applications
 3) Curtailment Process

Does not address alternative or long-term management remedies

Focused Curtailment

New Appropriations

Replacement Water Proposal

Σ 50-YR CAPTURE AMOUNT: 382.15 af

CAPTURE AMOUNT VS. REPLACEMENT WATER AMOUNT

New Appropriations

Replacement Water Proposal

Applications to Change POD

50-YEAR SCENARIO STATISTICS			
Σ 50-YR CAPTURE AMOUNT:	25.28 af		

Applications to Change POD

Curtailment

Draft Interim Order

http://water.nv.gov/documents/Notice%20and% 20Proposed%20Order%20Humboldt%20River %20Region.pdf

B. Hydrologic conditions:

- i. Effectiveness of any curtailment to increase actual flow in the decreed source and thereby avoid conflict caused by non-delivery of senior rights.
- ii. Drought conditions as measured by available snowpack data, runoff forecast for the season, prior years' condition and cumulative water deficit.
- iii. Well location and potential for capture as demonstrated by USGS and DRI models

FOCUSED CURTAILMENT BASED ON: ✓ Drought conditions

- ✓ Short-term benefit
- ✓ Capture liability

What's Next for Linking Science to Management?

Next Steps

NDWR

Next Steps

- Final model results for management analysis and decisions
- Appropriate level of precision in relying on model results
- Public awareness and transparency
- Hearing on draft order: Friday April 2, 2021
- Final order to be issued following review of public comment

CONSERVATION NATURAL RESOUR

126

